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ABSTRACT: To optimize the biological activity of pyrrole−imidazole polyamide DNA-binding molecules, we characterized the
aggregation propensity of these compounds through dynamic light scattering and fractional solubility analysis. Nearly all studied
polyamides were found to form measurable particles 50−500 nm in size under biologically relevant conditions, while HPLC-
based analyses revealed solubility trends in both core sequences and peripheral substituents that did not correlate with overall
ionic charge. The solubility of both hairpin and cyclic polyamides was increased upon addition of carbohydrate solubilizing
agents, in particular, 2-hydroxypropyl-β-cyclodextrin (HpβCD). In mice, the use of HpβCD allowed for improved injection
conditions and subsequent investigations of the availability of polyamides in mouse plasma to human cells. The results of these
studies will influence the further design of Py-Im polyamides and facilitate their study in animal models.

■ INTRODUCTION
N-Methylpyrrole (Py) and N-methylimidazole (Im) polya-
mides are heterocycle-based oligomers that bind the minor
groove of DNA in a sequence-specific manner.1−3 Inves-
tigations of Py-Im polyamide biological properties have
demonstrated that these compounds are cell permeable,3−5

localize to the nucleus,3−5 and display transcriptional inhibition,
likely through an allosteric mechanism by disrupting the
transcription factor−DNA interface.6,7 This compression may
be responsible for the observed reduction in transcription factor
occupancy upon polyamide−DNA complexation.8−10 Gene
regulation properties have been illustrated in cell culture
models targeting transcription factors androgen receptor (AR),8

glucocorticoid receptor (GR),10 hypoxia inducible factor
(HIF),9,11 nuclear factor kappaB (NF-κB),12 AURKA/
AURKB,13 and TGF-β.14,15 We have investigated the utility
of Py-Im polyamides in organismal models through in vitro
ADMET studies,16 real-time biodistribution monitoring
methods,17 and, most recently, the development of mouse
pharmacokinetic and toxicity profiles.18 Recent efforts to
develop more potent polyamides, however, have been hindered
by poor solubility.19 These observations raise concerns about
the likely aggregation of Py-Im polyamides. If aggregation is an
issue, how does particle size correlate with structural features
such as size, charge, shape, turn substitution, and Py/Im
composition of the oligomer?

Recent studies of the aggregation of small-molecule drug
candidates through dynamic light scattering (DLS) and
detergent-based assays have highlighted the importance of
such considerations in drug design.20−23 Indeed, a screen of
over 70000 potential drug candidates by Shoichet and co-
workers found that 95% of the initial hits acted as aggregate-
based inhibitors.24 At the same time, several currently approved
drugs can be classified as aggregate-based inhibitors25 and in
some cases aggregate particle size may be linked to
pharmaceutical efficacy.23,26,27 We thus decided to investigate
this important pharmacokinetic parameter and its relationship
to the biological activity of Py-Im polyamides. As our laboratory
explores the efficacy of polyamides in animal disease models,
there becomes a pressing need to characterize the aggregation
and solubility properties of these compounds as well as to
investigate the use of formulating reagents to solubilize
polyamides at the high concentrations required for animal
injections.

■ RESULTS
We selected two libraries of Py-Im hairpin polyamides, 1−6 and
7−11, targeting the AR/GR consensus sequence 5′-
WGWWCW-3′ (W = A/T)8,28 or the NF-κB consensus
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sequence 5′-WGGWWW-3′, respectively (Figure 1).12 These
two different heterocyclic cores were diversified with a variety
of substituents at the 4-aminobutyric acid (GABA) turn
positions (R1, R2) and at the C-terminus (R3). Substituents
at these positions are known to affect DNA binding and

biological activities.4,5,19,29,30 For example, the first-generation
modification at the C-terminus, β-alanine-3-(dimethylamino)-
propylamine, was shown to be a negative determinant of cell
uptake.4,5 This study focuses on the second-generation
modification of the C-terminus without a β-alanine linker and
with incorporation of isophthalic acid used in our cell culture
studies.30 In addition, the employment of cyclic polyamide
architectures has resulted in increased DNA binding affinities
and selectivities31 as well as improved efficacy against AR-
regulated genes.28 Taken in context with our recent finding of
increased murine toxicity of cyclic polyamides,18 we decided to
also investigate the properties of cycles 12−14 (Figure 2). All
Py-Im polyamides were synthesized according to previously
published solid-phase procedures.12,18,19,32

The aggregation propensity of Py-Im polyamides was
investigated through dynamic light scattering (DLS). Com-
pounds 1−14 were studied at 1, 4, and 10 μM concentrations
in a 0.1% DMSO/PBS solution in order to approximate the
DMSO concentration and salt content present in cell culture
experiments. Stock solutions (1000×) of each polyamide in
DMSO were rapidly mixed with PBS, and the scattered light
intensity was measured over the course of 10 min. The
minimum concentration at which each compound was found to
give a significant signal intensity (3× the buffer signal as per
manufacturer guidelines), along with the respective particle
sizes derived from a cumulant fit of the autocorrelation
functions, are listed in Table 1.33 Hairpin polyamides generally
formed particles with radii of 70−200 nm at 4 μM
concentration. One notable trend is that the benzamide
substituted compounds (4 and 10) formed measurable particles
at lower concentrations (1 vs 4 μM) than their free amine
counterparts (2 and 8). Py-Im polyamides containing
fluorescein substituents (5 and 6) formed significantly larger
particles when compared to the isophthalic acid conjugates (2
and 4), and compound 11 precipitated from the solution before
particle size could be determined. Interestingly, cyclic
polyamides 12−14 formed larger particles than the hairpin
polyamides, with the bis-β-amino substituted cycle 13 forming

Figure 1. Chemical structures of hairpin polyamide library along with
the corresponding circle−stick models and target DNA sequences.
Legend: black circle = Im; white circle = Py; semicircle = γ-
aminobutyric acid unit with dashed (R, β) or wedge (R, α)
substituents; hexagon = isophthalic acid/IPA; rectangle = fluores-
cein/FITC; W = A/T bases.

Figure 2. Chemical structures of cyclic polyamide library along with
the corresponding circle−stick model and target DNA sequence.
Legend: black circle = Im; white circle = Py; semicircle = γ-
aminobutyric acid unit with dashed (R, β) substituents; W = A/T
bases.
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the largest particles in this data set. Similar results were
observed for a number of additional polyamides (see
Supporting Information, Table S1), except for compounds
containing three or four consecutive imidazole rings (17, 18),
which formed particles too large to be accurately measured
(radii >1 μM).
Next, the macroscopic solubility properties of these

compounds were investigated by measuring the concentration
of selected Py-Im polyamides in the soluble fraction of
solutions with similar maximum concentrations (4 μM, Figure
3). Each compound was added as a 1000× (4 mM) stock in
DMSO to PBS in accord with the light scattering experiments.
Solutions were sonicated and then allowed to equilibrate for 2 h
at room temperature before aggregates were removed through
centrifugation. To measure the concentration of polyamide in
the supernatant, a plot of HPLC peak area vs concentration was
generated using polyamide 7 with detection at 310 nm, the
wavelength at which each compound was quantified (see

Supporting Information, Figure S1). In general, the 5′-
WGWWCW-3′-targeted hairpin polyamides (1−4) were
found to be more soluble than their 5′-WGGWWW-3′-targeted
counterparts (7−10). Within each set of polyamide hairpin
cores, a relationship between turn substituents and solubility
was observed. Polyamides with β-amine-substituted turns (2,
8)29 were found to be more soluble than those compounds
with α-amine-substituted turns (1, 7),34 and the former
compounds were further solubilized upon acetylation (3, 9).
Increased solubility upon incorporation of acetylated turn units
was also observed in the cyclic architecture (13 vs 14). The
benzamide-substituted compounds (4, 10)19 and the bis-β-
amine substituted cycle 1418,28 were found to be the least
soluble, in good agreement with the light scattering measure-
ments. Interestingly, none of the studied polyamides were fully
soluble under these conditions.
We thus decided to investigate the ability of known

formulating reagents, in particular cyclodextrins (CDs),35 to
decrease aggregation and/or precipitation among the less
soluble hairpin polyamides 7−10 (Figure 4). 2-Hydroxypropyl-
β-cyclodextrin (HpβCD) was chosen initially due to its high
water solubility and low animal toxicity.36 Using procedures
identical to the solubility analyses, peak areas of Py-Im
polyamides in the presence of 0, 5, or 50 mM HpβCD were
measured. A cyclodextrin-dependent increase of soluble
polyamide concentration was observed for all compounds
studied, with compounds 7 and 8 near the maximum expected
concentration in solutions of 50 mM HpβCD (Figure 4A).
Impressively, 50 mM HpβCD increased the concentration of
the least soluble derivative (benzamide-substituted polyamide
10) over 50-fold. Surprisingly, the soluble concentration
observed for polyamide 9 was significantly higher than expected
based on the quantitation of the corresponding DMSO stock
solution. This result likely derives from aggregation and/or
precipitation of compound 9 upon dilution of the polyamide in
water before the absorbance is measured, resulting in an
underestimation of the stock concentration. We further probed
the specificity of these effects by studying the solubilization of
polyamide 7 by other carbohydrate formulating reagents,
namely α-CD, γ-CD, hydroxypropyl methylcellulose (hypro-
mellose), and dextrose (see Supporting Information, Figure
S2). The three cyclodextrin derivatives were studied at 5 mM
concentrations, while hypromellose, a linear substituted glucose
polymer, and dextrose, the glucose monomer, were normalized
for total sugar content against 5 mM HpβCD. In addition to
HpβCD, polyamide 7 was solubilized by γ-CD and
hypromellose (Figure 4B). Polyamide 12, which would seem
less likely to form an inclusion complex with cyclodextrin due
to its cyclic form, was screened against the same formulating
agents. HpβCD and hypromellose also solubilized cyclic
compound 12. Notably, neither polyamide displayed an
increased solubility in the monomer (dextrose) solution.
The utility of these results was further probed in an animal

model system. Our laboratory recently found that high blood
levels of polyamide 7 can be achieved in mice following an
intraperitoneal (IP) injection of 120 nmol compound in a
vehicle of 20% DMSO/PBS (600 μM concentration, Figure
5A).18 Using HpβCD, the DMSO content could be reduced to
1% with no loss in solubility. IP injections of 120 nmol
polyamide 7 in a 1% DMSO/80 mM HpβCD/PBS vehicle and
the subsequent blood collection were performed under
identical conditions to those previously reported. After blood
collection, the plasma was isolated through centrifugation and

Table 1. Estimated Radii of Polyamide Aggregate Particles at
the Concentration of Minimum Signal in 0.1% DMSO/PBS
at 25 °C

aRadii derived from a cumulant fit of the average autocorrelation
functions collected over 10 min. Errors represent standard deviation of
at least three independent measurements. bRadius could not be
determined due to rapid precipitation of the compound at 1 μM
concentration.
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the bulk proteins removed through methanol precipitation. The
supernatant was then mixed with dilute aqueous trifluoroacetic
acid (TFA), and a reference compound in acetonitrile was
added. The injection vehicle containing HpβCD yielded
circulating polyamide concentrations comparable to those
previously reported (Figure 5B). In both cases, polyamide
concentrations of 13−14 μM were detected in mouse plasma
1.5 h after injection, with no polyamide detected after 24 h.
Furthermore, FITC-labeled compound 11, which formed a
precipitate in 20% DMSO/PBS solutions, was fully solubilized
upon addition of HpβCD (80 mM), allowing the compound to
be injected into mice. Slightly reduced plasma concentrations of
compound 11 were observed as compared to compound 7,

which may indicate reduced bioavailability of the FITC-
modified polyamide (Figure 6A).
We then sought to investigate the availability of the

circulating polyamide to human cells by taking advantage of
the nuclear staining generally observed with FITC−polyamide
conjugates. Plasma samples isolated from mice injected with
compound 11 were added to A549 (human lung cancer) cells
16 h prior to imaging live cells with confocal microscopy. In
cells treated with plasma collected at 1.5 h postinjection, strong
nuclear fluorescent signals were observed (Figure 6B). Greatly
reduced levels were observed with plasma isolated 4.5 h
postinjection, and no significant signal was observed with the
addition of the 24 h plasma sample (see Supporting
Information, Figure S3).

Figure 3. Calculated soluble concentration of select polyamides in 0.1% DMSO/PBS at 25 °C. Maximum concentration estimated at 4 μM (dotted
line) based on quantitation of starting material in 0.1% DMSO/water. Resultant concentrations determined by HPLC peak area at 310 nm detection
after comparison with a standard curve (see Supporting Information). Error bars represent standard deviation of at least three independent
measurements.

Figure 4. (A) Calculated soluble concentration of polyamides 7−10 in 0.1% DMSO/PBS containing 0, 5, or 50 mM HPβCD at 25 °C. (B)
Calculated soluble concentration of polyamides 7 and 12 in 0.1% DMSO/PBS containing: 5 mM α-, Hpβ-, γ-cyclodextrin (α, β, γ, respectively), 6
mg/mL hypromellose (HM), 35 mM dextrose (DX). Maximum concentration estimated at 4 μM (dotted line) based on quantitation of starting
material in 0.1% DMSO/water. Resultant concentrations determined by HPLC peak area (λ = 310 nm) after comparison with a standard curve (see
Supporting Information). Error bars represent standard deviation of at least three independent measurements.
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■ DISCUSSION AND CONCLUSIONS
Dynamic light scattering measurements revealed that both
hairpin and cyclic polyamides form measurable particles
between 50 and 500 nm in size at biologically relevant
concentrations (Table 1). Interestingly, particles of similar size
were observed for all polyamides containing an isophthalic acid
(IPA) at the C-terminus despite the differing activities of these
compounds in cell culture. These results support a mechanism
of polyamide activity in which aggregation may not be a key
factor.
Another interesting observation is that neither aggregation

nor solubility is affected by the overall ionic charge of the

polyamide. While organic compounds with ionizable groups are
generally expected to be more soluble in aqueous salt solutions,
neither light scattering nor solubility analyses revealed such a
dependence. Indeed, hairpins and cycles in which the GABA
amino turn units were modified with acetyl groups were found
to be the most soluble.
At first glance, the lack of solubility observed for some

polyamides is surprising as similar concentrations are
commonly used in cell culture experiments, often without
evidence of aggregation or precipitation. However, the
experimental conditions required for the solubility experiments
are a limited comparison to those in cell culture. For example,
cell media generally contain a variety of small molecule and
protein nutrients, and cell cultures are kept at higher
temperatures (37 °C vs 25 °C). In addition, the soluble
fraction isolated by centrifugation is not necessarily representa-
tive of the available polyamide concentration during a typical
cell incubation period (48−72 h), particularly if aggregation is a
dynamic process. We note that similar solubility issues have
been reported by Sugiyama and co-workers, who enhanced the
biological activity of seco-CBI polyamide conjugates through
PEGylation37 or liposomal formulations.38

We were able to mitigate the problem of polyamide solubility
through the addition of carbohydrate formulating reagents, in
particular HpβCD. As cyclodextrins are generally thought to
form discrete inclusion complexes with small organic
molecules,36,39 we postulated that the linear conformation of
hairpin polyamides may be well-solubilized by such additives.
Indeed, the solubilization of polyamide 7 by the larger
cyclodextrins (β and γ) is consistent with the formation of
possible cyclodextrin inclusion complexes,40 which in this case
may result from interactions with the isophthalic acid unit at
the C-terminus or the N-methylimidazole group at the N-
terminus. Such interactions would not be expected, however,
between cyclodextrins and cyclic polyamide 12. Interestingly,
solubilization of compound 12 was observed with HpβCD but
not the other cyclodextrin derivatives. The lack of solubilization
with γCD would be consistent with a model in which the
interactions between HpβCD and cycle 12 rely more on the
hydroxypropyl substituents unique to HpβCD, perhaps
through additional hydrogen bonding interactions, rather than
encapsulation. While both the linear 7 and cyclic 12 polyamide
compounds were solubilized by hypromellose, presumably
through encapsulation within the polymer matrix, it is notable
that no significant solubilization was observed with the dextrose
monomer. This latter observation may indicate the importance
of an ordered carbohydrate structure, such as that available with
cyclodextrins and hypromellose, for efficient polyamide
solubilization. Further studies are necessary, however, before
conclusions can be drawn regarding the interactions between
Py-Im polyamides and carbohydrate derivatives, and such
investigations fall outside the scope of this work.
Further evidence of the utility of HpβCD as a formulating

reagent was gathered in mouse experiments. First, we
demonstrated that the HpβCD vehicle did not significantly
affect circulating levels of polyamide 7. On the other hand, the
fluorescently labeled derivative 11 was only sufficiently soluble
in HpβCD solutions. As a result, hairpin 11 could be injected
into mice using this vehicle. This tagged compound was of
particular interest due to the high plasma protein binding levels
(>99%) that had been previously reported for Py-Im
polyamides during ADMET studies.28 Evidence of nuclear
uptake was observed in A549 cells following incubation with

Figure 5. HPLC traces of mouse plasma isolated from four mice at
three time points after injection with 120 nmol polyamide 7 in two
different vehicles: 20% PBS/DMSO (A) and 1% DMSO/80 mM
HPβCD/PBS (B).

Figure 6. (A) HPLC traces of mouse plasma isolated from four mice
at three time points after injection with 120 nmol polyamide 11 in
20% DMSO/80 mM HPβCD/PBS. (B) Confocal image of A549 cells
after 16 h incubation with mouse plasma isolated 1.5 h after injection
with polyamide 11.
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plasma from hairpin 11-treated mice, thus demonstrating the
availability of circulating polyamides to human cancer cells.
In summary, these studies have provided evidence that the

aggregation propensity of Py-Im polyamides likely does not
contribute to biological activity and may not be a critical
concern in pharmacokinetic analyses. Solubility experiments
revealed important trends, such as the increased solubility
achieved by acetylation of the GABA amino turn unit, which
will impact the design of next generation polyamides.
Furthermore, the identification of an effective delivery vehicle
will allow for the in vivo study of otherwise inaccessible Py-Im
polyamides. These studies represent a contribution to the field
of small molecule transcriptional inhibitors and their ultimate
utility as tools for perturbing gene expression networks in vivo.

■ EXPERIMENTAL SECTION
Synthesis of Hairpin Py-Im Polyamides (1−11, 15−32). The

synthesis of Py-Im polyamides has been extensively described in
previous work5,12,19,29,32 and is summarized as follows: Reagents were
purchased from Sigma-Aldrich or Novabiochem. Py-Im cores were
synthesized on Kaiser oxime resin using Boc-based chemistry, cleaved
using 3,3′-diamino-N-methyldipropylamine, and purified by reverse
phase preparative HPLC. The C-terminal amine was then derivatized
with either isophthalic acid (IPA) or fluorescein isothiocyanate
(FITC) and the crude intermediate isolated through ether
precipitation. The GABA turn protecting groups (α-NHBoc or β-
NHCBz) were removed under acidic conditions. If applicable, the
crude intermediate was again isolated through ether precipitation and
further derivatized at the GABA turn amine with either acetic
anhydride or PyBOP-activated benzoic acid. Final products were
purified through reverse phase HPLC and the identity confirmed
through matrix-assisted laser desorption ionization−time-of-flight
(MALDI-TOF) mass spectrometry. The synthesis and characterization
of compounds 1;10 2−6;19 7, 11;12 15, 25−3219 were in line with
literature reports. Results from MALDI-TOF characterization for
compounds 8−10, 12−14, and 16−24 are available in the Supporting
Information (Table S2).
Synthesis of Cyclic Py-Im Polyamides (12−14). The synthesis

and characterization of polyamides 12 and 13 have been previously
described.18 In brief, the heterocyclic cores of these polyamides were
synthesized on Kaiser oxime resin as above, except that a terminal
GABA turn unit (Boc-GABA−OH or (R)-4-(Boc-amino)-3-(Z-
amino)butyric acid) was added. Following deprotection of the
terminal Boc unit, the core was cleaved from the resin with DBU/
H2O and the resulting acid purified by reverse phase HPLC. The
precursor acid was then cyclized using diphenylphosphorylazide under
basic conditions. The crude intermediate was isolated through ether
precipitation and the CBz group(s) removed as above. Polyamides 12
and 13 were then isolated through reverse phase preparative HPLC.
Polyamide 14 was synthesized by reaction of 13 with acetic anhydride
under basic conditions and then purified be reverse phase HPLC.
Results from MALDI-TOF characterization for compound 14 are
available in the Supporting Information (Table S2).
Polyamide Quantification. Polyamide concentrations were

measured by UV-absorption analysis on an Agilent 8453 diode array
spectrophotometer in distilled and deionized water containing up to
0.1% DMSO using a molar extinction coefficient (ε) of 69500 M−1

cm−1 at 310 nm.
Dynamic Light Scattering. DMSO and PBS were passed through

a 0.02 μM syringe filter (Whatman) immediately prior to use. Stock
solutions of each polyamide in DMSO were quantified as above and
the purity determined by HPLC to be greater than 95%. Solutions of
1, 4, and 10 mM in DMSO were prepared and then centrifuged for 15
min at 16g to remove particulates. Immediately before measurement,
0.5 μL of the DMSO stock was added to 500 μL of PBS in a
microcentrifuge tube. The solution was mixed briefly with a pipet tip
and transferred to a disposable plastic cuvette (Fisher). Measurements
were performed on a Wyatt Dynapro Nanostar instrument using a 659

nm/100 mW laser at 100% power and a 90° detection angle at 25 °C.
Acquisition times of 10−15 s were collected over 10 min and analyzed
using the cumulant fit tool in the Dynamics (6.11.1.3) software with
PBS as the referenced solvent. Acquisitions in which the baseline value
of the fit was greater than ±0.1 were omitted and the remaining traces
averaged. Measurements in which the intensity (cts/s) was less than
3× the buffer signal intensity were considered below the detection
limit.

Solubility Analysis. Stock solutions of each polyamide in DMSO
were quantified as above and the purity checked by HPLC. Solutions
of 4 mM stock were prepared in DMSO. Polyamide (0.5 μL) was
added to 500 μL of PBS in a microcentrifuge tube, and the solution
was immediately vortexed and placed in a sonicating water bath at 25
°C for 20 min. The tubes were then removed from the bath and
allowed to equilibrate for 2 h at room temperature. Samples were
centrifuged for 20 min at 16g and 100 μL of the supernatant removed
for HPLC analysis. Analytical HPLC analysis was conducted on a
Beckman Gold instrument equipped with a Phenomenex Gemini
analytical column (250 mm × 4.6 mm, 5 μm) and a diode array
detector (Mobile phase: 10−80% CH3CN in 0.1% CF3CO2H
(aqueous) over 17.5 min. Flow rate: 1.50 mL/min. Injection volume:
40 μL.). Peaks were detected and integrated at 310 nm absorbance
using the Karat32 software. Sample concentrations were determined
through comparison to a standard curve of concentration vs peak area
that was generated using compound 7 (Supporting Information,
Figure S1). Solubilization by formulating agents proceeded similarly
except that the DMSO stock solutions were added to PBS containing 5
or 50 mM HpβCD, 5 mM αCD, 5 mM γCD, 35 mM dextrose, or 6.00
mg/mL hypromellose (approximately 35 mM relative glucose units
based on reported substitution for Aldrich lot no. 128k0214v).

Animal Experiments. Murine experiments were performed as
described previously.18 In brief, C57bl/6 mice (8−12 weeks of age,
Jackson Laboratory) were injected intraperitoneally with 200 μL of a
PBS solution containing: (a) 120 nmol compound 7, 20% DMSO, (b)
120 nmol compound 7, 1% DMSO, 80 mM HpβCD, or (c) 120 nmol
compound 11, 20% DMSO, 80 mM HpβCD. Blood was collected
from anesthetized animals (2−5% isoflurane) by retro-orbital
withdrawal. Immediately after the third blood draw, animals were
euthanized by asphyxiation in a CO2 chamber (2 atm).

Plasma was isolated by centrifugation of the collected blood. The
samples from the four replicate mice were combined at 5 μL/sample,
yielding 20 μL combined plasma that was then treated with 40 μL of
CH3OH, vortexed, and centrifuged. Then 50 μL of the supernatant
were combined with 1 equiv of the HPLC loading solution (4:1 water/
CH3CN, 0.08% CF3CO2H) containing Boc-Py-OMe (methyl 4-((tert-
butoxycarbonyl)amino)-1-methyl-pyrrole-2-carboxylate) as an internal
spike-in control. Analytical HPLC analyses were conducted with a
Phenomenex Kinetex C18 analytical column (100 mm × 4.6 mm, 2.6
μm, 100 Å) and a diode array detector (Mobile phase: 5−60%
CH3CN in 0.1% (v/v) aqueous CF3CO2H over 12.5 min. Flow rate:
2.0 mL/min. Injection volume: 40 μL.). Peaks were detected and
integrated at 310 nm absorbance, and sample concentrations were
determined through comparison to the previously published standard
curve for this column.18

Confocal Microscopy. For confocal microscopy experiments,
A549 cells in F-12K medium supplemented with 10% FBS (1 mL,
100k cells/mL) were applied to culture dishes equipped with glass
bottoms for direct imaging (MatTek). Cells were allowed to adhere for
18 h in a 5% CO2 atmosphere at 37 °C. The medium was then
removed and replaced with 200 μL of fresh medium supplemented
with 20 μL of plasma collected 1.5, 4.5, or 24 h after injection of
compound 11. After an additional 16 h incubation period, 100 μL of
untreated medium was added to each slide prior to imaging. Imaging
was performed at the Caltech Beckman Imaging Center using a Zeiss
LSM 5 Pascal inverted laser scanning microscope equipped with a 63×
oil-immersion objective lens. Fluorescence and visible-light images
were obtained using standard filter sets for fluorescein and analyzed
using Zeiss LSM software.
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